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INTRODUCTION

The RBQQ richzone willbe characterizedby conditionsthat exacerbate thermal radiation

loadson the liners.High sootdensitiesand temperaturesinthe richzone may leadto unacceptably

high radiativefluxeswhich compromise linerdurability.The task of predictingthese radiative

fluxesiscomplicatednot justby the lackof good models forsootformation injetfuel,but alsoby

flowturbulence,which isknown to leadto enhancement ofradiation.Basing radiativecalculations

on time-averaged CFD temperatures and speciesdensitieswillgenerallynot be accurate. The

development of a usefulanalyticaltoolforthermal heat transferpredictionthus requiresa jetfuel

kineticsscheme, a soot formation model, and an efficientway of calculatingradiativefluxesin

turbulentenvironments. The soot model isneeded not justforpredictionof radiationloads,but

alsoforpredictionofsootburnout inthe quench zone. A furtherrequirementisgeometricflexibility

forthe radiationalgorithm.

In response to this problem, a joint UTRC-University of Connecticut theoretical program

was put in place. The program was based on describing coupled soot formation and radiation in

turbulent flows using stretched flamelet theory. The University of Connecticut had responsibility

for Subtask F, entitled Reactive Flow Modelling, and consisting of three parts: development of

an engineering model of jet fuel kinetics appropriate to diffusive combustion, improvement of the

standard, linear k-_ turbulence model which is common to many flow and combustion codes, and

development of a joint pdf methodology for the calculation of mean flow and radiation in a turbulent

flame. UTRC had responsibility for Subtask G, entitled Flamelet Kinetics and Turbulent Radiation

Model. This effort was involved with using the model jet fuel kinetics mechanism to predict soot

growth in flamelets at elevated pressure, to incorporate an efficient model for turbulent thermal

radiation into a discrete transfer radiation code, and to couple the soot growth, flowfield, and

radiation algorithms. The soot calculations used a recently developed opposed jet code which

couples the dynamical equations of size-class dependent particle growth with complex chemistry.



Severalofthe tasksrepresenttechnicalfirsts;among theseare the predictionofsootfrom a detailed

jetfuelkineticsmechanism, the inclusionof pressureeffectsin the sootparticlegrowth equations,

and the inclusionof the efficientturbulentradiationalgorithmin a combustor code. A schematic

overview of the main technicaltasksand how they are coupled to providepredictionsof radiative

fluxesisshown in the accompanying figure,followedby detaileddescriptionsof the work done in

the two Subtasks,the soot growth/radiationcomputer program, and sample calculations.
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Subtask F. Reactive Flow Modeling

The reactive flow modeling task consisted of three parts: development of a jet fuel kinetics

model appropriate to diffusive combustion, improvement of the standard, linear k-e turbulence

model which is common to many flow and combustion codes, and development of a joint pdf

methodology for the calculation of mean flow and radiation in a turbulent flame. The underlying

combustion model is based on flarnelet theory and is described below.

FLAMELET MODELING

Turbulent combustion modeling necessitates dealing with the description of reaction rates,

directly or indirectly. Advanced combustion models seek to circumvent the problem of solving

balance equations and associated closure problems involving scalar correlations which appear in a

conventional Reynolds decomposition of the species conservation equations.

Of the more advanced methods flamelet and PDF methods are the most promising. PDF

methods potentially have greater generality, but are mathematically more complex than flamelet

models and presently are limited to very simple chemistry. The latter limitation precludes the

modeling of soot formation from large hydrocarbon molecules. Modeling of turbulence/radiation

effects using PDF methods also is expected to be especially cumbersome. On the other hand,

flarnelet modeling, the approach followed in this work, easily accommodates complex chemistry and

radiation effects. Although in certain applications the principal constraint in flamelet modeling

may be a physical one, that the scale of the reaction zone need be small relative to the scale of

turbulence, this is not expected to be a limitation in modeling high pressure, high temperature

flames as found in gas turbine combustors.

In flaanelet modeling, the combustion zone is treated as an ensemble of folded, laminar-like

structures which are convected by the turbulence. The thickness of the laminar-like reaction zone is

a function of the strain rate as reflected in the molecular (scalar) dissipation, a quantity analogous

to the viscous dissipation. Both the mean scalar and viscous dissipation are computed in the mean



flow calculation.

A highly significant advantage of the flamelet approach is that kinetic calculations are not

carried out in the main flow calculation. Thus unencumbered, the problem is reduced to computa-

tion of mixing with variable density. Luminous and non-luminous radiation, intensity combustion

products, and soot concentrations are derived from post-processing of the main flow data using

analytical expressions for these properties derived from a laminar flamelet calculation.

JET FUEL KINETICS

The objectiveof thistask was to develop a kineticsscheme which providesrealisticestimates

of flamelettemperature and flame products concentrationsnecessaryfor the predictionof both

luminous and non-luminous radiation.The predictionof intermediates,particularlyacetyleneand

aromatics,wasconsideredessentialfor the descriptionof soot formation. To keep thistask man-

ageableunder the allottedtime itwas necessaryto do two things.The firstwas to decideupon

the composition of the simplestmodel fuelwhich might mimic the behavior of jetfuel,and the

second was to devisea kineticsscheme forthe model fuel.Both pyrolysisand oxidationkinetics

were considered.Regarding the latter,simple,globalkineticschemes,as describedin the literature,

were not consideredadequate for two reasons,the lackof descriptionof intermediatesnecessary

to describethe formationof soot,and the limitedrange of pressure,temperature and composition

over which globalschemes are valid.Furthermore,diffusiveeffects,not reflectedinglobalschemes,

are important in practicaldevices. The development of _jetfuelkinetics_ thereforenecessitated

consideringboth complex pyrolysisand oxidationkineticskeepingin mind thatcombustion would

occur primarilyin a diffusive(as opposed to premixed) mode. This latterassumption alloweda

major simplificationof the kineticsscheme. The kineticsscheme and itsinclusionin the flamelet

calculationisdiscussedbelow.



MODEL FUEL SELECTION

One important considerationin devisinga model fuelisthat the fuelshould mimic the com-

bustion ofjetfuelin the formation of soot. The appropriatephysicalmodel of soot formation is

that soot derivesfrom the inceptionand subsequentgrowth of soot nucleioriginatingin fuel-rich

zones.The inceptionprocessconsistsofthe formationofpolycyclicaromatics(PAH) under fuel-rich

conditionsfollowedby the growth of PAH from the continuous additionof acetyleneto the PAH.

Eventuallya solidphase isformed which alsogrows grow by acetyleneaddition.Soot kineticsare

discussedin Subtask G, where a detaileddescriptionof thesoot formationmodel used in thiswork

isgiven.

Since jet fuel contains about 20% aromatics, incepting species are abundant initially, and the

inclusion of an aromatics component in the model fuel is essential. Acetylene is a product of the

pyrolysis of the alkane constituents, the most abundant family of compounds in jet fuel. Although

the alkane fraction consists of hundreds of compounds, individual alkanes will pyrolyze in a similar

manner to yield ethylene, methane, hydrogen, and most significantly, acetylene. Thus, a simple

model fuel would consist of two classes of compounds, alkanes and aromatics, and the simplest

model fuel would contain a single representative alkane and a single representative aromatic.

Detailedchemicalanalysesprovidedby Southern Petroleum Laboratoriesand Pratt and Whit-

ney Aircraftwere the principalsourcesconsideredin devisingthe model fuel.Total saturatesand

aromaticsand the most abundant carbon number foreach classare shown in Table I.

Table I

P&W SPL Average Carbon Number Most Abundant

Saturates 79.1 76.6 9.98 Clo

Aromatics 20.5 19.1 9.12 C9, C1o

N-decane and trimethylbenzenewere selectedas the model fuelcomponents on the basisof

averagecarbon number and the detailedanalysis(85% n-decane,15_ trimethylbenzene).Contri-



butionsto sootfrom otherrelativelyabundant compounds, such asindans,tetralin,and napthalenes

were not consideredas thesecouldbe consideredasadditiveinceptingspecies(seesootmodel). Cy-

cloalkaneswere not consideredseparately.

The overallkineticscheme issummarized in Fig. I. The reactionequation setispresentedin

Appendix A. This scheme was incorporatedintothe laminar flameletcalculationwhich provided

flamelettemperature and gaseous speciesdistributions.In a second step thesedata were used as

the startingpointforthe calculationofsoot viathe UTRC sootmodel.

For n-decane, it was assumed that appreciable heating of the fuel in a diffusion flame occurs

prior to exposure to oxygen. Thus a reasonable simplification would allow that substantial decane

pyrolysis occurs before significant oxidation. The process was viewed as one in which decane served

as a source of pyrolysis products, most of which were subsequently oxidized and a small fraction

of which (C2H2) participated in the formation of soot. Oxidation was confined to C1 and C2

species. The n-decane kinetics are modeled through a step-wise pyrolysis scheme beginning with

the formation of decyl radical and proceeding to the formation of smaller saturated and unsatu-

rated molecules whose oxidation is modeled comprehensively. An abbreviated benzene formation/

pyrolysis/oxidation scheme was used. The approach is opposite to that taken in descibing decane

kinetics. It was assumed that aromatic nuclei were thermally stable. Aromatics kinetics was mod-

eled using a global oxidation scheme for 1,2,4 trimethyl benzene (TMB), the most abundant jet fuel

aromatic constituent (Ref. 1). The mechanism describes the stepwise oxidation of mono-aromatic

intermediates and decomposition to benzene (see Appendix A).

LAMINAR COUNTERFLOW FLAME (FLAMELET) CALCULATIONS

The kinetics scheme is incorporated into a laminar, counterflow, diffusion flame calculation

which serves as the basis of the turbulent combustion model. The flamelet calculation is done

for a counterflow diffusion flame with appropriate temperature, pressure, and mass flux boundary

conditions for the fuel and oxidant streams. Mixture fraction is computed from the species profiles,
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and the relevant species, temperature and density functions are expressed as polynomials in mixture

fraction. Individual flamelet calculations are parameterized by the scalar dissipation rate which is

a function of the reactant mass fluxes. Successful laminar flame solutions have been obtained

with the model fuel. Substantial concentrations of benzene and acetylene are indicated. Typical

flamelet profiles are shown in Fig. 2. Inspection of the data computed at typical engine operating

conditions, indicate that the the heat release zone is very thin, about 0.3ram, thus supporting the

flamelet model.

NON-LINEAR k-e TURBULENCE MODEL

A non-lineark-_ turbulencemodel, based upon the work of Speziale(Refs.2,3),was incorpo-

ratedintothe TEACH code. The non-linearmodel providesa significantimprovement inpredictive

capabilityover the standard k-e model without significantadditionalcomputational burden. No

additionalequationsare introducedintothe analysisas with other advanced models such as dif-

ferentialReynolds stress (DSM) algebraic stress (ASM) models. Notable successes of the model

include improved prediction of normal stresses in channel flows, prediction of secondary flows in

non-circular ducts (inherently impossible with the standard linear model), and improved prediction

of recirculation zone length behind a rearward facing step.

The standard, linear k-e model, assumes a linear relationship between stress and mean vorticity

rendering it inherently unable to describe secondary and other flows with anisotropic normal stresses.

For curved or swirling flows, correction terms are invoked in the dissipation equation and eddy

viscosity formulation. Often these solutions are found to be problem dependent ,and thus, limited

in generality. More advanced, (and also more complicated) approaches such as ASM and DSM

may offer greater potential for complex flows, but this has not been established, and the additional

computational burden often may not be justified. The non-linear stress model extends the validity

of linear stress models by allowing for normal stress anisotropy. Two additional quadratic terms are

added to the momentum stress expression. The additional terms are subject to several mathematical

constraints, the principal restraint being that of frame indifference (Refs. 2, 3). This requires that
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the tensor form of the non-linear terms not change with change of reference frame, i.e. the form is

the same for both inertial and non-inertial reference frames. The expression is written below.

rij = -_pk6ij + 2C/_p-_ Dij

t_ 3

-_-CDp(2Cbl)2_ - [Dim Dmj - 1/3Dmn Dmn61j (1)

+¢. VD,'--'j-Ov----L,_kj-Ov----Ljb-_w_]
axp,. aXk

,Sij 2 avm Dmk]+--Iv. Vb-  k -
8X k5"

where Di--jis the mean deformation tensor.

The constant CD is assumed to have the value 1.68. The first two terms on the RHS represent

the usual, linear formulation for the momentum stress; the remaining terms comprise the non-

linear contribution. The expression above was rewritten for generalized coordinates and applied to

a two-dimensional cylindrical system for application to the TEACH code. The principal difficulty

in implementation is that a large number of quadratic terms are introduced when non-Cartesian

coordinates are used.

Predictions of the linear and non-linear models are compared for a model fuel combustion in

an axisymmetric, constant radius, dump combustor configuration (Fig. 3). Profiles of temperature,

velocity, and soot volume fraction (soot volume fraction shown as a function of mixture fraction) ,

computed by the joint pdf method, are compared in Figs. 4-7 for the following conditions: pressure,

10 arm, air temperature 917K, fuel temperature 478K, and equivalence ratio, 0.5. The predictions

of the linear and non-linear models are seen to differ considerably, indicating that the net radiative

loss and other flame properties may be sensitive to the choice of turbulence model. Also shown is

the soot volume fraction derived from laminar flamelet data for a single value of strain rate. Since

the absolute level of soot volume fraction is strain rate dependent the most significant finding in this

comparison is that one effect of turbulence is to shift the peak volume fraction to leaner mixtures.

More numerical examples will be given in the Subtask G discussion.

11
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MODELING THE JOINT PDF

Mean flame properties are derived from underlying flamelet properties by statistical methods.

The random variables involved in the averaging process are mixture fraction, z, scalar dissipation

rate, X, and a characteristic value of scalar dissipation rate which identifies a particular flamelet. The

value at stoichiometric, X=t, is usually chosen. X and z are assumed to be statistically independent

(Ref. 4). Experimental evidence indicates that z and X are well represented by beta and lognormal

probability density functions, P(z;ai), and P(X;/_i),respectively. c_i and _i are each two parameter

sets which complete the description of the probability densities. Three of the four parameters

are described by transport equations which form part of the overall mean flow equation set. The

remaining parameter (see Appendix B), related to the variance of X, is experimentally derived and is

assumed constant throughout the flow field. An expresion for the joint probability density function

is presented below.

Flamelet properties such as temperature, density, and composition are computed in the counter-

flow flame calculation subject to imposed reactant flow rate boundary conditions which are related

to X,t. Individual flamelets are identified by their characteristic scalar dissipation rate X=t. Any

flamelet property Q(z,xst) will then have a mean local value given by the following expression,

(Q) = Q(xot, z) P(X.=, z) dz dx== (2)

where P(X,t, z) is the joint density of z and X,t.

The jointdensityisgiven by the expression(Ref.4),

P(X=,,z) = f" P×(x,tf)" P(z) (3)

The shape factor f is defined as X/X,t and is found to be nearly independent of the flow rate

boundary conditions. Thus, f is a function of z only.

17



The marginal density P(xst), not used explicitly, but used as a check of the distributon function

for X.t, is obtained by integrating the joint density in z space. Thus,

1P(X,,)= P(x,,,z)dz (4)

Numerical Integration

Since X,t is unbounded it was necessary to assign an upper limit to Xst, XJtmax, which yielded

a value of the distribution function close to unity. The distribution function F(Xst ) is defined by,

XetF(X,,)= Vx.,(_)d_ (5)
JO

In principal, the distribution function could be evaluated at each point as a function of Xst max

and Xst mix chosen to satisfy some pre-determined value of the distribution function. This procedure

would have been overly cumbersome, however, so an approximate procedure was used. An estimate

of the standard deviation of X,t was derived from analytical expressions for the moments of X and

assumptions of mean values of the shape factor f(z). The upper limit of Xst was then assumed to be

three or four standard deviations above the mean value of X,t. Occasional checks of the distribution

function showed that an upper limit so defined was sufficiently large. Further details are given in

Appendix B.

18



Subtask G. Soot Kinetics and Turbulent Radiation Model

This task,closelycoupled to Subtask F, was comprised ofthe following:

1. Modification of a discrete transfer radiation code to provide for boundary-fitted coordinates

in axisymmetric annular combustor geometries, and the inclusion of realistic, wavelength-dependent

gas and soot radiative coefficients.

2. The inclusion of an efficient algorithm for turbulence effects on gas and soot radiation in

the above code.

3. The predictionofsoot growth in the model jetfuelflameletsatelevatedpressure.

4. Coupling the output of the CFD solver and the sooting flamelet calculations to the radiation

code.

TURBULENT RADIATION

Turbulent fluctuations enhance time-averaged radiation from flames relative to predictions

based on time averaged flame properties, and the effect can be very large (Refs. 5-8). An analytic

treatment of turbulence effects on monochromatic radiation was provided by Kabashnikov and Kmit

(Ref. 5) for the Wien spectral regime and an assumed linear variation of absorption coefficient with

gas temperature. Subsequent analysis of the effect in combustion has been mainly numerical in

nature. The "Monte-Carlo" modelling approach of (Refs. 6,7) divides optical paths into a number

of homogeneous, statistically independent elements with dimensions corresponding to the turbulence

integral scale, and sets up possible instantaneous realizations of optical path. This has been done by

randomly sampling the fuel mixture fraction distribution function within each homogeneous element,

with the underlying pdf parameters derived from a turbulent flow model solution. Assumed state

relationships between sampled mixture fraction and temperature/radiating species concentrations,

usually taken from laminar flamelet solutions, complete the scheme. The inhomogeneous path
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parameters are supplied as input to standard radiation band models, and the radiative intensity

pdf is built up by performing many trials. This approach of setting up many realizations may

not be practical in modelling complex combustor geometries with large numbers of grid points,

however. The complexity of this approach has seemed so daunting that many modellers have been

forced to neglect the effect in the hope that it is small in cases of interest to them. A simpler

and faster semi-analytic approach for gas and soot radiation is described here, and found to give

good agreement with the more cumbersome Monte-Carlo approach. It rests on the decorrelation

of point- and path-averaged properties. A simpler calculation results in which attenuation-related

terms are based on time averaged properties, and the local radiant power density is ensemble

averaged over the fluctuation pdf using efficient numerical quadratures. Only one path integration,

yielding the time-averaged intensity, is needed for the spectrally-integrated soot emission, and for

each molecular band. The result is essentially equivalent to Monte-Carlo with a great reduction in

computation time. The need to perform pdf averaging of the local radiant power density at each

node point represents little more effort than is ordinarily expended in turbulent flow calculations

where ensemble-averaged properties are desired. Numerical examples showing the application of

this theory to a CH4-Ha turbulent diffusion flame and to a research combustor will be presented.

In the absence of scattering, and neglecting wall effects, line-of-sight monochromatic radiation

can be represented by the integral

I k(w,s') Ib (w,s') e-J'.; k(_,,") d."= (6)

where k and Ib represent the local absorption coefficient and Planck function, respectively. For a

fluctuating medium, the ensemble- or time-averaged intensity is represented by

f" '(I)- (k(ca, s') Ib (o2,s') e-f.' k(w,,.")d.") ds' (7)

Kabashnikov and Kmit suggested that under certain circumstances it suffices to replace the absorp-

tion coefficient in the attenuation term with its time average value, and to employ a time-averaged

local power density at each point, e.g.
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_0 8 s
(I) " (k(w,s') Ib (w,s')/e- f.' (k(_,_")) d."__ ds ! (8)

This is equivalent to saying that the time-averaged intensity is due mostly to fluctuations in

the local emission power density, with the path-dependent exponential attenuation terms averaging

out to some extent and making less of a contribution. The simplification afforded by this result is

obvious, provided that something is known about the local turbulent fluctuation probability density.

The only alternative is the inherently inefficient process of using random number generators to set

up realizations of optical path, and building up the radiation statistics by performing a radiation

calculation for each such realization. Hall and Vranos (Ref. 8,9) arrived independently at a similar

conclusion for spectrally-integrated, wideband gas radiation. They verified their result for turbulent

diffusion flame radiation by comparisons with such "Monte Carlo" calculations. (In this paper,

Monte Carlo will be used in a somewhat different sense than it usually is in radiation calculations).

Kabashnikov and Kmit, and Krebs, et al (Ref. 10) have shown that a condition for the validity of

this approach is that individual eddies not be optically thick. For soot radiation, this condition will

usually be satisfied. For the CO2 4.3/_ band, there may be violation at high pressures, but usually

the soot radiation will be dominating. The application to gas and soot radiation in combustors will

now be discussed.

GAS RADIATION

The analysis of turbulent gas radiation has been given by Hall and Vranos using the exponential

wideband model (Refs. 8, 9, 11). It will be illustrated by application to a turbulent diffusion flame.

With the usual simplification that the absorption features vary much more rapidly than the Planck

function, the intensity generated along a line of sight can be represented as

o" dAi (o:_°), s') ds' (9)I-- E "_s' Ib
l
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where Ib isthe Planck functionevaluatedat band centerfrequency_0), and the subscriptidenotes

the i-thactivemolecular band. Here Ai isthe integratedband absorptance,which forcombustion

problems can be wellapproximated usingthe high pressureform

A

A--_ ---(In(_/Ac#) -I-Ez (_/Ac_) -I-_Iz) (10)

- pIs-s'l

where Aw ismolecularresonance bandwidth, clisintegratedband intensity,and p isthe infrared

activespeciesdensity.Band overlapsare neglected,and itisunderstood that a summation over

allactivebands of HnO, CO2, and CO willbe performed to calculateintensity.Neglectingband

overlapeffects,the subscriptcan be suppressedwith the understandingthata sum over allbands

willbe performed at the end.

There ismuch currentdiscussioninthe radiativetransfercommunity about the relativemerits

of narrowband, wideband, and line-by-linecalculations(Ref. 12).The latterare too time consum-

ing for practicalapplicationsat the presenttime,and narrowband models arethought to be more

accuratethan the wideband. However, forengineeringpurposes the computationallyefficientwide-

band models are feltto be acceptable(Ref.13),particularlysincesoot radiationwillbe dominant

in most casesof interest.As willbe seen in the next section,the calculationof soot radiationis

more nearlyexact,requiringnone ofthe approximationsthat are inherentinthe band models.

For nonhomogeneous opticalpaths, the Curtis-Godson scalingapproximation as given by

Morizumi and Edwards (Ref. 14) isemployed. In thisapproximation,the band aimorptance is

expressedin terms of scaledparameters as

where

A
= en(flLi )+ Z, + (ll)

A_
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as" (12)_= _p
#

1 f' ds" (13)= ,  po,

Thus, we have, approximately,

_os (_)(1 e-_/-£-J) pa Ib ds'I -_ (14)

The quantity of interest is the ensemble average of Eq. 14. In the integrand, the factor p _ Ib is

point specific, but multiplies an A-derivative factor that involves only path averaged properties, as

per Eqs. 11-13. Inasmuch as these paths traverse eddies or volume elements that are presumed to

be statistically independent, one can make the approximation that the two factors in the integrand

are statistically independent, i.e.

JoI -I(I) = (1 - e -_/z_'°) (p_Ib) ds' (15)

where () denotesensemble- or time-averaging.

It will be assumed that state relationships giving temperature T and species densities in terms

of the fuel mixture fraction pertain. These are obtained in laminar fiamelet theory from opposed jet

solutions at a representative value of strain rate; typically the radiating gas species concentrations

and temperature are not strongly sensitive to strain rate if the strain rate is in the appropriate

range. Thus, if the probability density p (z, _/i) for mixture fraction z is known, where rll are the

known parameters of the pdf, the ensemble average
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1(p _ Ib) = p(z;r/i) g(z) a(T(z)) Ib(T(m)) dz (16)

can be regarded as a known quantity at each point along the optical path. The crux of the analysis

lies in showing that the ensemble average of the other function of path- averaged properties is

adequately represented by evaluation of the function with time-averaged properties, i.e.

[X-_,.,___.(1-e -_/_) \)--, (_-_----_)(1-e -(_)/(_)) (17)
-/

where the terms on the r.h.s, are evaluated on the basis of time- averaged properties. Details are

given by Hall and Vranos.

Example calculationsaxe now shown foran atmosphericpressure,CH4-H_ turbulentdiffusion

flame on which extensivediagnosticmeasurements have been reported in Ref. 15. The flowfleld

was simulatedwith a standard k-_turbulencemodel and a parabolicflowsolver,providingat each

spatialnode point the mean fuelmixture fractionand itsvariance.We assume fortheseexample

calculationsthatthe mixture fractionpdf p(z)isdescribedby the beta density(Ref. 16),

p(z)=

a=

b--7(1- (z))

r(a + b) z)b_ 1
r(a) r(b) z*-' (1-

(18)

a+ b = ',/

(z) (1 - (')) 1

where r isthe gamma function,and (z)and (z'2)are the mixture fractionmean and variance,

respectively.The staterelationshipbetween mixture fractionand temperature,density,and species

concentrationswas assumed to be givenby an opposed jetorcounterflowflame solution,employing

a widely used program (Ref. 17). Mixture fractionishere definedas the averageof the C- and

24



H-atommixturefractions,eachofwhich has been normalizedto itsfuelsidevalue.These solutions

are characterizedby a representativevalueof the strainrate,roughly the velocitygradientnormal

to the flame structure,and a solutioncorresponding to a median value is used. When soot is

included in the flameletcalculations,the jointpdf of z and scalardissipation(strainrate)must

be employed, as has been discussedin Subtask F. The k-_ based paraboliccode givesa solution

in distancesnormMized by the innerfueltube radius(Figure8). The opticalpaths were divided

intosegments of lengthcorrespondingto the localintegralscale.The "Monte Carlo" calculations

were then performed in a way similarto Refs. 6, 7. Within each independent volume element,a

random number generatorwas used torandomly sample the mixture fractiondistributionfunction

(Ref.6). From the resultingvalueof mixture fractionthe instantaneoustemperature and species

concentrationswere then interpolatedfrom the opposed jetstaterelationships.The intensityfor

the realizationwas then calculatedfrom Eqs. 15-17,summing the activebands. Itisalsopossibleto

make a calculationofracliativefluxbased on time-averagedtemperatureand density.The quantity

ofinterestisthe ratioof time-averagedintensityto intensitybased on time-averagedproperties,or

the intensityenhancement.

Table 2 compares the "Monte Carlo" and "analytic" predictions for the time-averaged, line-of-

sight intensity at two heights above the burner surface. The two heights encompass a significant

range of optical thickness, as shown by the band center optical depth of the H20 G.3/J transition.

As seen, the "analytic" predictions, which are much more efficiently obtained, satisfactorily agree

with the Monte Carlo predictions. There are minor differences, not shown, in the absolute value

of predicted mean properties having to do with the much different algorithms for the two types of

calculations. This gas band discussion has employed wideband models. If the use of narrowband

models is preferred, there seems little reason to believe that the underlying result would not be

applicable to them, as well.
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Table 2

Enhancement Factors- f_I_.Intensity

H (cm) "Monte Carlo" "Analytic" (_/_--_w)6.s_

25 1.317 1.327 0.73

200 1.194 1.197 2.54

SOOT RADIATION AND DISCRETE TRANSFER ANALYSIS

The discussionofturbulentsootradiationisillustratedwith an applicationto a realisticcom-

bustorgeometry. A fluxmodel foraxisymmetric,annulargeometrieshas been developed using the

discretetransfermodel of Lockwood and Shah (Refs.18,19).The discretetransferalgorithmhas

been selectedbecause itgivesconsiderablegeometricflexibility,asiswellknown. A boundary-fitted

coordinatesystem that uses transfiniteinterpolationisemployed, so that curved inner and outer

radialboundaries can be handled. Applicationof the program to a simulatedannular combustor

geometry isshown in Figure9. The program works itsway around the boundaries of the com-

bustor,at each point P firingraysin alldirectionsintothe combustor, and locatingthe pointsof

intersectionswith the walls.These wallintersectionpointsserveas startingpointsforline-of-sight

radiationcalculationsback to the point P, at which the net radiativefluxiscalculated.The x

symbols denote the pointsat which the rayspass through axialand radialboundaries;foreach

ray,a listof the cellspassed through and the lengthof the ray within each cellismade forthe

radiationcalculation.Because medium propertieswillvary from cellto cell,thisallowsmedium

inhomogeneitiesto be accounted for. The gridshould be fineenough to resolvethe gradientsin

averagetemperature;ifthe turbulentradiationalgorithmisto be applied,itisimportant that the

propertiesinadjacentcellsbe statisticallyindependent.The rayswhich seem to be highlycurved

correspondto paths emanating from the outerradialwall,miss the innerradialwall,and end inthe

outer wall. The radiativefluxdivergences(from which gas coolingratescan be derived)can also
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be calculatedforeach cell;to do so requirescalculationof the internalradiativeintensities.Wall

fluxestend to become relativelyinsensitiveto the number of raysat around 32 rays per pointper

quadrant;depending on the geometry and mesh, however, largernumbers ofraysmay be needed to

sample certainremote cellsforaccurateradiativedissipationcalculationsinthesecells.The line-of-

sightradiationcalculationscan be performed eitherwith a narrowband radiationmodel (Ref. 20),

or with a combination ofthe wideband gas model discussedin the lastsectionand a quasi-analytic

sootmodel which willnow be discussed.

The calculationofspectrally-integratedsootradiationalonga homogeneous path can be repre-

sentedinclosedform ifgas radiationeffectsaresmall.Given typicalthermal radiationwavelengths,

sootparticlesare usuallyin the smallsizeparameter or Rayleighrange where scatteringisnegligi-

ble.To firstorder,ifintraclustermultiplescatteringeffectsaresmall,the sootabsorptioncoefficient

can be taken to have the form appropriateto Rayleigh spheroidseven forclusters,e.g.

k,(_) = c,_fv (19)

where fv isthe particlevolume fraction,w in unitscm -t, and the constant cs isrelatedto the

complex soot index ofrefraction.Itwillbe convenientto ignoreboth the frequencydispersionof

cs and itstemperature dependence. Ifthe Planck functionisrepresentedas

_o

Ib(T) ---cI_3E e-'_c2°_/T
rim1

line-of-sightsootradiationcan be representedby the double integralover path and frequency

(20)

lD _0 _ ¢90 p
, -c,w , (21)I=c.cl ds' d_' _ e_ f,,(s)e f, f,(,")d,"

n----1

the frequencyintegralcan be done first,using

_o ee _4 e-a_ d_ = 4!/as
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giving

n_l_ o' f_(s')dslI = 4!c,cl = (nc2/T(s _) + c, f_ fv(s") ds") s

which isequivalentto,fora homogeneous path,

(23)

oo

i_3,Cln_1 (( 1 1 )= ncn/T) 4 (nc,/T + c.f,,s) 4 (24)

Ifthe opticalpath isinhomogeneous (Figure10),the intensitylineintegral,Equation 21, can

be representedas a sum of N terms overeach of which the path integralcan be done analytically,

as in Equation 24. This givesthe inhomogeneous path expression

+

1 1
I = 3!Cl

n=1 (nc:TT1)* (nc,/T1 + c.fv(1)Ax)*

I 1

(ncz/T, + c.fv(1)A(1)) 4

I

(nc_/T2 + c,(fv(1)A(1)+ fv(2)A(2)))4

1

(nc2/Ts + c.(fv(1)A(1) + fv(2)A(2))) 4 (nc_/Ts + c,(fv(1)A(l) + fv(2)A(2) + fv(3)A(3)) 4

1 )+ .... nc2/T_ +c, FN__) 4 - (nc_/TN + c, FN) 4

(25)

where

Fi- _ f_(j)A(j)
j----1

A wallat Q with temperature T,, willadd to Equation (25)the expression

oo
1

Iv, = 3!e,ci _ (nc,/Tw + c.FN) 4 (26)

Ifthe wallisnon-black,and we can assignan effectiveradiationtemperatureTr to the fluxincident

on Q, Equation (26)can be replacedby
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OO

1

Iw = Iw (Eq. 26) + 3F(1 - _w)C1 E (ncnlTr + c, FN)'
n=l

as the contributionof the oppositewallto the radiationat P.

(27)

Radiation fluxescalculatedusingEqs. 25-27 agreepreciselywith those usingthe narrowband

RADCAL representation(Ref. 20) provided that a consistentvalueof c° isused (assumed equal

to 7.0 for c.g.swavelengths). In the Eqs. 25-27 calculationthe frequencysummation is done

analyticallyas shown; in the narrowband calculationitisdone numerically,thus givingriseto

considerableefficiencyenhancement in the former case. A sample comparison isshown in Figure

11 for the outer annularwallof the model combustor shown in Figure9. A uniform temperature

of 2000 K and uniform volume fractionof 10-e and cold,black wallshave been assumed. The

agreement is also exact for inhomogeneous medium test cases.

To calculate soot radiation from turbulent flames, the stochastic analysis requires that L(s') in

the integrand of Equation 21 be decorrelated from the path integral of volume fraction appearing

as the exponential argument in the integrand. Doing so (but keeping the correlation of fv(1) with

the path integral for A(1)) gives

(i)=3]c1_ / 1.=I (nc,/T,)'

fv(2){ i _
+_ _ (nc,/T, + c_fv(1))A(1)) 4

f_(N) ( 1.... + (fv(N)----_ nc2/TN+c. (FN_I)) 4 -

1

(nc_/T1 + c, fv(1)A(1)) 4

)(nc,/T, + c.((f.(1))A(1) + (f.(2))A(2))) 4

(nc2/TN lc0{FN))4) /

with

(Fi)--- E (fv(j))A(j)
j----1

where the Ti and the fv (i) are fluctuating quantities.
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This has the followinglimits

Opticallythick

Opticallythin

OO

= _IT 4) (29)
n----1

oo N
1

/I)=_4!ClC_S _-_ n-"_"_ (fv(i)TS)A(i) (30)
n----1 i----I

In the optically thick limit, the time-averaged flux loses its sensitivity to fluctuations in volume

fraction,and becomes proportionalto the time-averagedvalueofT 4 at thewall.Wall contributions,

Eqns. 26, 27 willbe evaluatedon the basisof averagesootvolume fractionand the time-averaged

Tr.

Discretetransfercalculationsfor an annular combustor shape representativeof the RQL rich

zone areshown in Figures12 and 13. For the homogeneous temperature and volume fractionvalues

chosen,the net radiativefluxeson the inner and outer radialsurfaces(assumed to be cold and

black)are shown. The outer wallsees more radiatinggas and has higherpredictedfluxes.On

both surfaces,the contractionispredictedto be an areaof high fluxbecause the surfacenormal is

exposed to a longeropticalpath.

COMBINED GAS AND SOOT RADIATION

The combined effectof gas and soot radiationisnot simply additive,mainly because of ab-

sorptionof gas band radiationby the soot continuum. The gas bands alsoabsorb soot radiation

to some degree. Each gas band'sradiationisattenuatedby the soot absorptioncoefficientat the

band centerfrequency.Thus, Eq. 9 becomes

0
I = _ e-,,_:°'f._f,(,")d0"dAi• ds--7" Ib (_0), s')ds' (31)

l

where the isummation extendsoverallmolecularbands.
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The absorptionofsootcontinuum radiationby the gas bands employs an approximation given

in Ref. 21. The totalsootradiationisEquation 25 plusthe expression

j_O ! --r /rill _,r|i) ]c, _ w}°) ds' f,, Isi Aw,[e-' • ÷ _,I_-L_) _ e " (32)
i

where r(i)= c,_ °) f:_fv ds";_iand Awi are as definedinEquation 7 and 8, and Ibi= Ib(w_O)).

Thus, the totalradiativefluxwhen both gas and sootare presentisgivenby Equations 25,31

and 32. In turbulentmedia, the sootand radiationfollowsthe previouslydiscussestreatments,but

the soot attenuationterm in Equation 31 and the entireEquation 32 are based on time-averaged

properties.This treatmentof gas-sootoverlapeffectsisnot exact,but itspredictionsare generally

closeenough to thosebased on more exactnarrowband calculationstobe acceptableforengineering

purposes.

Soot scatteringhas been ignored in thisanalysisbeacause typicalsoot sizesof 0.05 to 0.I

micron and the wavelengths ofinterestin thermal radiationanalysisproduce relativelysmall size

parameters (IrD/A)that are associatedwith weak Rayleigh scattering.The largeimaginary part

of the soot index of refractionalsodictatesthat the soot extinctionislargelydue to absorption.

Scatteringcould,however, be includedifunusuallylargesootparticleswere predictedor observed.

SOOT DISTRIBUTIONS IN MODEL JET FUEL FLAMELETS

As discussed,the microflowforthe stretchedflamelet/pdfapproach to turbulencemodelling

isthe counterflowflame,depictedin Figure 14. The soot concentrationsfor the model jet fuel

flameletswere calculatedusing an opposed jetsolverwith complex chemistrythathas had added

to it the dynamical and transportequationsof soot spheroid growth (Ref. 22). The modular

spheroiddynamical model includesinception,coalescence,surfacegrowth, and oxidation,and uses

the sectionalor sizebin representation.The model alsoaccounts for soot particlescrubbing of

growth speciesand oxidants,and for gas and soot radiation.Beforethismodel could be applied
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to the present problem, however, a number of code enhancements had to be carried out. The first

was the creation of a potential flow version more appropriate for flamelet calculations than the

plug flow assumption used in the original program. Second, since high pressure calculations were

desired, pressure effects on the soot growth kinetics had to be included. As pressure increases, the

largest particles move from the free-molecule growth regime (mean free path larger than particle

size) to the so-called continuum regime. Correction for this effect is non-trivial, and certain of

the needed code modifications were carred out on this contract. The main correction made was

to correct the particle coalescence frequencies for continuum effects. This has a pronounced effect

for pressure levels on the order of ten atmospheres, and it is felt that the corrections made are

adequate for moderate pressures. To extend the calculations to much higher pressures, however,

further corrections to the thermophoretic velocities and the surface growth expression would be

required.

The model jet fuel kinetics mechanism had 42 species and 123 chemical reactions (Appendix A).

The soot volume fraction is generally insensitive to the number of size bins, but accurate average soot

size and number require more bins. A compromise of eight bins was employed in these calculations.

Volume fraction is the soot size/density parameter of most interest for radiation calculations. The

major uncertainties in soot loading calculations are associated with the modelling of the nucleation

and surface growth processes. The field of soot growth modelling is being actively investigated, and

answers to these questions are being refined. For these calculations, a relatively simple, but widely

used and highly successful model due to Lindstedt and co-workers (Ref. 23) has been used. While

developed for methane, it has been applied with good results in many simulations, one of the most

noteworthy being in co-flow, acetylene-air diffusion flames (Ref. 24). In this model, both inception

and surface growth are proportional to acetylene concentration, with Arrhenius-type temperature

dependences. The dependence of inception on acetylene concentration is the most controversial

aspect of this model. However, models of inception based on small mass PAHs have not yet been

entirely validated and accepted. The Lindstedt model is felt to be the best available at this time.
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Another favorablefeatureof the stretchedflarneletapproach;wherein the soot growth parameters

arecalculatedoff-lineisthe relativecaseby which differentgrowth models can be incorporatedinto

the analysis,and the factthat one isnot forcedto oversimplifyeitherthe chemistryor the soot

growth mechanism asispresentlythe casewith transport-basedapproaches.The Lindstedtgrowth

parameters used are tabulatedbelow.

Table 3

Rate Constants,in the form A The -I_/RT,forSoot Formation and

Consumption Model (unitsare kg, m, s,kmol, kcal,and K)

Rate Constant A b E

k_ 1.35x I0s 0.0 41 x l0s

k_ 5.00x 102 0.0 24 x l0s

k_ 1.78x 104 0.5 39 x 10s

where the rateconstantsare associatedwith inception,surfacegrowth, oxidationand coalescence

processesin the way describedin Figure 15. The model in itsoriginalform solvestwo coupled

conservationequations,one for the soot mass fraction,and one for the soot number density.The

presentuse ofthesegrowth parameters differsfrom that in Ref.33 inthatthey areused herewith

thesizeclassrepresentation,which providesa sizedistribution.Refs.23-24assumed a monodisperse

sizedistribution.While the resultsare generallysensitiveto inceptionrate,they are not sensitive

to the mass selectedfor the inceptionspecies.A nominal mass of 720 a.m.u, has been assumed

for the inceptionspecies.Although the model jet fuelkineticsscheme includesstepsleadingto

benzene, only the calculatedacetyleneconcentrationisused forpurposes of calculatinginception

ratesin the Lindstedtmodel.

With justtwo Lindstedtmodel dependent variables,transportor balanceequationsforthem

could have been readilyincorporatedintothe turbulentflow solver. (Examples of thiscan be

seen in certainpapers contained in Ref. 12). However, thisisdone on a "monodisperse" basis,

that is,therewould only be a singleparticlesizeat each location.Using itin conjunctionwith
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(Soot Mass) PS(Yc(s)) = riMc(s) + riiMc(s)[c(S)]2/3[N]1/3
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(Soot # Density) pS(N) = riv-rv[C(S)]llS[N] 1116,
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where r i = ki[C2H =]

re== I_if(p)[C2H =]

rii i = kliif'(p)[02]
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Cmin

116 1/2

rv = 2Ca (6M_s_L) ( 6kT )
_Pc(s) Pc(s)

Figure 15. The Lindstedt global soot formation model.
(Fairweather, Jones and Lindstedt, Comb. & Flame, 89, 1992)
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the stretchedflameletand sizeclassgrowth algorithmshas the advantage that informationabout

particlesizedistributionisobtained. Also, itisan open questionwhether monodisperse models

can properly treathigh pressuregrowth effectsassociatedwith differentsizeparticlesbelonging

to differentKnudsen Number regimes. It isfeltthat the sizeclassrepresentationused here can

properlytreatsuch effects.Ultimately,the Lindstedtmodel willprobably be basedon a smallmass

PAH inceptionscheme; stretchedflamelettheory,with itseaseofincorporatingcomplex chemistry,

can readilyhandle this,while transport-basedapproacheswillfinditallbut impossible.

Sooting flameletcalculationshave been carriedout for the conditionsgiven in Table 4 with

strainrateas an externalparameter.

Table 4

•10.5ATM

•TA-917K (1190F)

•Tr----478K(400F)

•Strainrate2750- 50 sec-I

Calculated growth and oxidizingspeciesin the model jet fuelflameletsimulationhave been

shown in Figure 2 fora specificvalueof strainrate.The temperature profileand volume fraction

forthiscase are shown inFigure 16. The sootisseen to be inceptedon the fuelsideof the flame,

and grows as itistransportedtoward the stagnationplane by convectionand thermophoresis.The

averagesootparticlesizeprofile,reflectingthe effectsofsurfacegrowth and coalescence,isshown in

Figure 17.Average particlesizesaremuch largerthan thosefound at atmosphericpressurebecause

of the high pressure.The calculationyieldsadditionalinformatiotnthat isnot shown here. The

particlesizedistributioniscalculatedat each point,forexample, and could be provided.

The calculatedsoot volume fractionprofilesin mixture fractionspace with strainrateas an

externalparameter are shown in Figure 18. As seen,the sootprofileshave the form ofa similarity

solution of the form fv(Z, a) -- h(a)g(z). Numerical differentiation of the profiles to give the scalar
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dissipation also reveals a similarity form as discussed in the preceding section on development of

the joint mixture fraction/scalar dissipation pdf. The flamelet profiles contain all the information

needed to formulate the joint pdf as shown in the Subtask F discussion.

While settingup the counterflowcode to calculatethem the firsttime isa cumbersome task,

itis likelythat thiscan be highly automated in the future. Work isin progresson creationof

_continuation"versionsof the opposed jetcode, in which the range ofstrainrates,pressures,fuel

composition and fuel/airtemperatures isswept out continuously(Ref. 25). For pressure,this

islikelyto yieldfairlysimple scalinglaws that can be used to correctparameters obtained at

a referencepressure.Changing jet fuelkineticsmechanisms alsoisnot a difficulttask;utilities

existto convertrestartfilesfrom one mechanism to another.Most of the calculationalinvestment

in the stretchedflarneletapproach occursin the librarysetup and generation;the postprocessing

calculationofsoot loadingsisrelativelysimpleand efficient.

The predicted pressure dependence of the volume fraction profile for a representative strain

rate is shown in Figure 19. For low to moderate pressures, soot volume fraction is about quadratic

in pressure. There are many factors contributing to this dependence. As pressure increases, more

complete reaction leads to higher overall temperatures in the flamelet, leading in turn to higher

inception and surface growth through the Arrhenius factors of Table 3. Increased acetylene concen-

tration also leads to increased inception and surface growth. The result is similar to that observed

in pre-mixed and co-flow diffusion flames (Refs. 26-29). At much higher pressures, the expecta-

tion would be that depletion of the gaseous carbon pool would result in a pressure dependence

approaching a linear relationship.

Figure 20 shows a comparison of calculations performed using the Lindstedt model with those

performed using a provisional model from Ref. 22, which has inception linked to calculated benzene

and phenyl concentrations. The latter model is not as well validated as the Lindstedt model, but

the differences shown are probably representative of the uncertainties in soot kinetic models at this

time. Use of another soot growth or jet fuel kinetics model would merely require that the curve fits
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ofthe shape and similarityparametersdescribedinthe Subtask F discussionbe redone,a relatively

simpletask.

COUPLED FLOW, SOOT GROWTH, and RADIATION PROGRAM

The sootingflameletand radiationalgorithmshave been coupled tothe TEACH code on apost-

processingbasis.The flowcalculationiscompleted, and the converged parameters are suppliedas

needed inputforthejointpdf and radiationcalculations.This assumes thattheradiationrepresents

asmallfractionofthe totalflowenthalpyrelease.Should thecontrarybe trueinsome circumstances,

itwould be possiblein principleto perform an iterativecalculationin which the fluxdivergence

issuppliedas a sink term to the energy equation forthe next iterationon the flowcode, and so

on. While the TEACH code has been used fordemonstration purposes,any otherflowcode whose

output can be arranged to givethe mean mixture fraction,itsvariance,and the scalardissipation

could be used.

A flow diagram showing the calculationalprocedure is shown in Figure 21. The contours

of the axisymmetric combuetor are firstsupplied to the program TRFN2D, which calculatesthe

radiationgridusing transfiniteinterpolationbased on the desirednumber of gridpointsin the r

and z directions.A program named READFLOW reads the output of the TEACH program; the

important quantitiesforthe soot growth and radiationcalculationare the mean mixture fraction,

itsvariance,and the scalardissipationat each node point.The program alsoreads in the means

of scalarsliketemperature,density,and the speciesconcentrations,sincethisversionof TEACH

calculatesthese,but the singlescalaraveragingneeded for these quantitiescan alsobe done in

the radiationcode. The output of READFLOW isthen mapped onto the radiativemesh using

RADMAP, which uses bilinearinterpolation.RADMAP also incorporatesinformationon wall

temperaturesand emissivitiesintoitsoutput file.The radiationgrid,the output of RADMAP, and

a flameletlibraryforsinglescalarpdf calculationsare then input to the discretetransferprogram,

RADCALC. The curve-fitsofthe sootingflameletlibrarycalculations(Subtask F) areincorporated

intoa subroutineJOINTPDF, which islinkedto RADCALC. The optionsavailableinRADCALC
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are a radiationcalculationbased on time-averagedproperties,and a calculationusing the turbulent

radiationalgorithmwhich has been discussed.When the time averaged propertyoptionisselected,

thereisalsothe optionofdoing narrowband calculationsusingRADCAL (Ref.20).The input also

includesthe number of raysto be used in the discretetransferanalysis,in the manner described

in Refs.18-19.The output ofthe program consistsofthe net radiativefluxeson allwalls,and the

volumetricradiativedissipationrate.Output isin KW/M 2 and KW/M s,respectively.Nominally

32 raysper point per quadrant are used in the discretetransferanalysis.

Sample calculationshave been carriedout forthe decane-fuelled,bluff-bodydump combustor

configurationshown previouslyin Figure3. The geometry isof a type in use at Wright-Patterson

Air Force Base (Ref.30).In the base configuration,fuelisinjectedat the middle of a center-body

face through a .96 cm diameter tube; the overalldiameter of the centerbody is 14 cm, and the

airstreamislocatedfrom radiallocation7 cm to the outerwallwhose radiusis12.7cm (5 inches).

The pressure,equivalenceratio,and fuel/airstream temperaturesare representativeof conditions

of practicalinterest.However, the combustor isof a type intended for diagnosticstudiesand is

relativelyslow mixing;the calculationsto followare intendedonly as numericalexercises,and are

not meant to representa combustor ofcommercial interest.Experiments insuch a simplegeometry

would be idealformodel validation.

The average temperature distribution in the model calculation is shown in Figure 22. The

relative slowness of the mixing is indicated by the fact that the average temperature level is still

rising at two meters. These average temperatures were calculated using a single scalar, mixture

fraction pdf, since temperature is only slowly varying with strain rate, and there is no need to use

the joint pdf. Corresponding mean mixture fraction and scalar dissipation distributions are shown

in Figure 23. The scalar dissipation, in units sec (-l), is seen to die away relatively rapidly with

distance from the fuel injector. These quantities, together with the mixture fraction variance, are

needed for the single scalar and joint pdf averaging algorithms. Application of the joint pdf results

in the calculated average soot distribution shown in Figure 24. The soot peaks on the centerline
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Figure 22. Temperature distribution in dump combustor simulation.
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Figure 23. Mean mixture fraction and scalar dissipation in dump combustor simulation.



Stretched Flamelet Theory

Figure 24. Soot distribution in dump combustor simulation.



near the fuelinjectorat valuessomewhat in excessof 10(-s)and diesaway over the courseof the

two meter length.Peak soot volume fractionsin ten atmosphere,kerosene-fuelledcombustors are

known to be of thismagnitude (Ref.31);while much more precisetheory-experimentvalidationis

necessarybeforeany conclusionscan be drawn, thisispreliminaryencouragment that thesefirst

calculationsof soot growth in high pressurecombustors are of the rightorder.(Soot loadingsare

sometimes given in unitsof grams per cubic meter. The predictedpeak soot volume fractionsin

thissimulationare on the orderof40 g/m s. There isexperimentalevidencethat primary zone soot

concentrationsat ten atmospheres are indeed about thislevel(Ref.31)).

Averaging out the strain rate in the joint pdf gives the pdf in terms of mixture fraction,

illustrated at the point of maximum soot in Figure 25. Whereas in an individual flamelet the

volume fraction maximum occurs at a mixture fraction of about .65, near the stagnation plane, the

joint pdf maximum occurs at lower mixture fractions around .4. This reflects the effects of flamelet

stretching by the turbulent flow.

Net radiative fluxes on the cylindrical wall are shown in Figures 26-28. The pure soot, pure

gas, and gas plus soot on a time-averaged basis are shown in Figure 26. Soot radiation is seen to

dominate the gas radiation for soot levels of this magnitude. The gas radiation is dominated by

the 4.3 micron band of COs. The good agreement of the present radiation model with spectrally-

integrated, narrowband calculations is shown in Figure 27, again on a time-averaged basis. The

present wideband-based model of Equations 25, 31 and 32 is much more efficient than the narrow-

band calculations, and gives agreement that is entirely satisfactory. Comparison to a prediction

using the turbulent radiation algorithm shows that in this case, turbulence is predicted to result in

an enhancement of somewhat lem than 20_ relative to calculations based on time-averaged prop-

erties (Figure 28). Because the double integration involved in the joint pdf is at present quite

time-consuming, the turbulent radiation algorithm as it relates to soot is in the code in an approx-

imate form. The temperature is allowed to fluctuate according to the single scalar pdf, using the

average volume fraction calculated with the joint pdf. A priority item for future work must be to
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finda more efficientdouble integrationtechnique.

The radiative dissipation profile on a time-averaged basis is shown in Figure 29, corresponding

to the contributions of both gas and soot. The dissipation rate (net radiative emission rate) tends to

follow the temperature distribution to an exaggerated extent because of the sensitivity of the Planck

function to temperature (Compare Figure 22). Because of the time-consuming nature of the joint

pdf calculation, radiative dissipation is presently calculated only on a time-averaged property basis;

only the fluxes on the walls are calculated using the turbulent radiation algorithm, and not the

internal fields needed for the dissipation calculation. The radiative source term could be supplied

as an energy sink term to the flow code energy equation for an iterative calculation to see whether

radiation significantly depresses average temperatures. The dissipation rate is the local emission

rate minus the rate of absorption of radiation from other parts of the combustor; note in Figure

29 a region of cold soot on the centerline near the fuel injector in which there is net absorption of

radiation.

Extensiveparametricvariationshave not yet been carriedout with thismodel. Changing the

fueland airflowratesby the same factorsisfound to resultin a mixture fraction/mixturefraction

varianceprofilethat issensiblyunchanged in spatialcoordinates.The peak scalardissipationdoes

scalewith velocityin the manner expected,but itsinfluenceisconfinedto a relativelysmall region

near the fuelnozzle.The resultisa soot profilethat isrelativelyinsensitiveto the velocitiesof

the streams (keepingequivalenceratioconstant).The radiativewallfluxesare similarlyinsensitive,

implying that the fractionof the totalenthalpy convertedto radiationisinverselyproportional

to velocityat constant equivalenceratio.The predictedpressuredependence of the soot volume

fractionwould approximate thatofthe flamelets;thatis,itwould be about quadraticforpressures

in the vicinityof ten atmospheres or below, and would be expected to make a transitionfrom

quadraticto linearat much higherpressures.

A sample, provisional,applicationof thissoot formation theory to the RBQQ sectorrigis

shown in Figure 30. A three-dimensionalCFD flowfieldsimulationwas obtainedcourtesyofCFD
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Stretched Flamelet Theory
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Figure 29. Radiative dissipation in dump combustor simulation.
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Research, Inc. From the provided profiles of mean mixture fraction, its variance, and the scalar

dissipation, values were extracted along the center of the sector rig, and soot loadings calculated

using the joint PDF algorithm. As seen, peak soot volume fractions in the rich zone approach 10 -s.

The soot is seen to be very effectively oxidized in the quench zone.

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

These investigations have lead to a number of noteworthy technical achievements. Among these

is the first calculation of soot formation in jet fuel based on a complex chemical mechanism. The

associated soot growth calculations are the first to incorporate continuum effects in the particle

kinetics scheme in order to treat high pressure growth. Further, this work marks the first inclusion

of efficient turbulence-radiation interactions algorithms into a radiation code. The inclusion of non-

linear effects in the k-e flow code and the formulation of a joint mixture fraction/scalar dissipation

pdf for turbulent soot formation from the stretched flamelet calculations are also significant technical

aspects. In the model jet fuel, predicted soot levels appear to be of the right order when compared

to primary zone data at elevated pressure. However, these data are limited; before this analysis

can be applied with confidence as a design tool, future work directed towards model validation and

enhancement should be undertaken.

Model validation studies would involve comparisons with turbulent jet data, starting with

simpler fuels like ethylene and propane. In terms of other basic experimental data, there is a strong

need for high pressure, sooting oppc_ed jet experiments, starting with ethylene, and progressing to

more complex fuels. Well-diagnosed model combustor experiments providing soot volume fractions

and radiative fluxes also would be invaluable.

Certainmodel enhancements couldbe undertaken.Among thesewould be sensitivityanalyses

and simplificationof the jet fuelkineticsmechanism. Simplifiedcorrelationsand scalingrelation-

ships linkingsoot levelsto pressure,strainrate,and fuel/airtemperatures can be developed to

obviatethe need to generatenew fiarneletlibraries.As new informationon sootinceptionand sur-
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facegrowth becomes available,thesewould be evaluateforimpact on jetfuelsootformation.The

basicstretchedflamelettheorycould be enhanced by considerationof partialpremixing,flamelet-

flameletinteractions,and non-adiabaticloss.

While the TEACH code was employed in these demonstration calculations,any flow code

that can be configuredto providethe requiredjointpdf parameters could be employed. Thus,

forexample, extensionsto unstructuredgridcodes such as CORSAIR would not be a complicated

matter. The discretetransferradiationalgorithmused herehas considerablegeometricflexibility.
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NOMENCLATURE

a

A

A I

b

Cl_ C2

Cs

D

El

f.

H

I

Ib

k

P

Ro

S

T

Z

Z t

beta density parameter; strain rate in opposed jet flame

band absorptance

band absorptance derivative

beta density parameter

Planck functionconstants

factorinsoot absorptioncoefficient

sootdiameter

exponentialintegral

sootvolume fraction

heightabove burner surface

radiativeintensity

Planck function

absorptioncoefficient

probabilitydensityformixture fraction

fueltube radius

opticalpathlength

gas temperature

fuelmixture fraction

fluctuationin mixture fraction
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Greek symbols

integratedband intensity

X scalardissipation

A Length oflocallyhomogeneous portionofinhomogeneous path

e emissivity

parameter in beta density

"_z Euler-Mascheroniconstant

r Gamma function

A thermal radiation wavelength

rIi probability density parameter

Aco bandwidth

band intensity path integral

p radiating gas density

co frequency

co(0) band centerfrequency

Subscripts

i i_th molecular resonance

w wall value
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APPENDIX A

Reaction Mechanism Rate Coefficientsin the Form _f -- AT_ezp(-Eo/RT).

Units are moles,cubiccentimeters,seconds,Kelvins,and calories/mole.

REACTION

1. H+O2=O+OH

2. H2+O=H+OH

3. H2+OH=H20+H

4. OH+OH=H20+O

5. H+OH+M--H20+M (M=AR)
H20/2O./

6. 02+M=O+O+M

7. H+H+M=H2+M (M=AR)

H20/0.0/H2/0.0/CO2/0.0/
8. H+H+H2=H2+H2
9. H+H+H20-H2+H20

10. H+H+CO2=H2+CO2

11. H2+O2=OH+OH

12. H+O2+M=HO2+M (M=AR)

H20/21./CO2/5./H2/3.3/CO/2./O2/O./N2/O./
13. H+O2+O2--HO2+O2

14. H+O2+N2=HO2+N2

15. HO2+H=H2+O2

16. HO2+H=OH+OH

17. HO2+O=OH+O2
18. HO2+OH=H20+O2

19. HO2+HO2--H202+O2

20. H202+M-OH+OH+M

21. H202+H=HO2+H2

22. H202+OH=H20+HO2
23. CO+O+M=CO2+M

24. CO+O2---CO2+O
25. CO+OH-CO2+H

26. CO+HO2=CO2+OH

27. CH4+M=CH3+H+M (M=AR)
H20/5./

28. CH4+H=CH3+H2

29. CH4+O=CH3+OH

30. CH4+OH=CH3+H20
31. CH4+CH2=CH3+CH3

32. CH3+M=CH2+H+M

33. CH3+CH3=C2H6

34. CH3+CH3=C2H4+H2

35. CH3+CH2=C2H4+H

__A_ __L
5.10E16 -0.820 16510.

1.80E10 1.0 8830.

1.20E09 1.3 3630.

6.0E08 1.3 0.

7.50E23 -2.6 0.

1.90ElI 0.5 95560.

1.0EI8 -I.0 0.

9.20E16 -0.6 0.

6.00E19 -1.250 0.

5.49E20 -2.0 0.

1.70E13 0.0 47780.
2.10E18 -1.0 0.

6.70E19 -1.420 0.

6.70E19 -1.420 0.

2.50E13 0. 700.
2.50E14 0. 1900.

4.80E13 0. 1000.

5.00E13 0. I000.

2.00E12 0. 0.

1.20E17 0. 45500.

1.70E12 0.0 3750.

1.00EI3 0.0 1800.

3.20E13 0.0 -4200.

2.50E12 0. 47700.

1.50E07 1.3 -760.

5.80E13 0. 22930.

1.00E17 0. 88000.

2.20E04 3.0 8750.

1.20E07 2.080 7630.

3.50E03 3.080 2000.

1.30E13 0. 9500.

1.90E16 0. 91600.

1.60E13 0.0 -306.
2.10E14 0.0 19200.

3.00E13 0.0 0.
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36. CH3+H--CH2+H2
37. CH3+O=CH20+H
38. CH3+O=CH2+OH
39. CH3+OH---CH2+H20
40. CH3+OH=CH20+H2
41. CH3+O2=CH20+OH
42. CH3+O2=CH30+O
43. CH30+M=CH20+H+M
44. CH30+H=CH20+H2
45. CH30+O=CH20+OH
46. CH30+OH=CH20+H20
47. CH30+O2=CH20+HO2
48. CH20+M=HCO+H+M
49. CH20+H-HCO+H2
50. CH20+O=HCO+OH
51. CH20+OH=HCO+H20
52. HCO+M=CO+H+M
53. HCO+H=CO+H2
54. HCO+O=CO+OH
55. HCO+O=CO2+H
56. HCO+OH=CO+H20
57. HCO+O2=CO+HO2
58. CH2+H=CH+H2
59. CH2+O=CO+H+H
60. CH2+O=CO+H2
61. CH2+O=CH+OH
62. CH2+OH=CH20+H
63. CH2+OH=CH+H20
64. CH2+O2=CO2+H+H
65. CH2+O2=CO2+H2
66. CH2+O2=CO+H20
67. CH2+O2=CO+OH+H
68. CH2+O2=HCO+OH
60. CH2+O2=CH20+O
70. CH2+CO2=CO+CH20
71. CH+O--CO+H
72. CH+OH=HCO+H
73. CH+O2=HCO+O
74. CH+CO2-HCO+CO
75. C2H6+H-C2H4+H+H2
76. C2H6+OH-C2H4+H+H20
77. C2H6+CH3-C2H4+H+CH4
78. C2H4+M=C2H2+H2+M
79. C2H4+M=C2H3+H+M
80. C2H4+H--C2H3+H2
81. C2H4+OH=C2H3+H20
82. C2H4+OH=CH20+CH3

9.00E13
6.80E13
5.00E13
1.50E13
1.O0E12
5.20E13
7.O0E12

1.O0E14

2.00E13

1.00El3

1.00El3
6.30E10

3.31E16
2.20E08

1.80E13

3.40E09

1.60E14

4.00E13
3.00E13

3.00E13

5.O0E12

3.30E13

7.30E17

3.O0E13
5.00E13

5.00E13

3.00E13

4.50E13

1.60E12

6.90Ell

1.90E10
8.60E10

4.30E10

2.O0E13

1.10Ell

5.70E13
3.00E13

3.30E13

3.40E12

5.40E02

8.70E09

5.50E-01
2.60E17

2.60E17

1.10El4
4.80E12

2.00E12

°

0.

0.

0.

0.

0.

0.

0.

0.0

0.

0.
0.

0.0

1.770

0.0

1.180

0.
0.0

0.0

0.0

0.0

-0.4

-1.560

0.0
0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0

3.5

1.050

4.0

0.0

0.0

0.0

0.0

0.0

15100.

0.

12000.

5000.

0.

34570.

25650.

25000.

0.

0.
0.

2600.

81000.

10500.

3080.
-447.

147O0.
0.0

0.0

0.0

0.0
0.0

O.

O.
O.

12000.

O.
3000.

I000.

500.

-I0O0.

-500.
-500.

9000.

1000.

O.

O.

O.

690.
52O0.

1810,

8280.

79350.

96600.

8500.

1230.
960.
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83. C2H3+M=C2H2+H+M
84. C2H3+H=C2H2+H2
85. C2H3+O2=HCO+CH20
86. C2H2+M=C2H+H+M
87. C2H+H2=C2H2+H
88. C2H2+O=CH2+CO
89. C2H2+OH=CH2CO+H
90. C2H2+OH=C2H+H20
91. CH2CO+M=CH2+CO+M

92. CH2CO+H=CH3+CO

93. CH2CO+O=CH20+CO
94. CH2CO+OH-CH20+HCO

95. C2H+O=CH+CO

96. C2H+O2=CO+HCO

97. C10H22+H=C10H21+H2

(WARNATZ)
98. C10H22+O--C10H21+OH

(WARNATZ)
99. C10H22+OH--C10H21+H20

(WARNATZ)
100. C10H22+CH3-C10H21+CH4

(PITZ)

101. ClOH22+C2H3=C10H21+C2H4)

(PITZ)
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116. C7H8+O2-C6H6+CH20+O
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APPENDIX B

The variance of Xst, VAR, is given by the expression

VAR = (X_=> - (X.,> 2

where (X_t)and (Xst)are the firstand second moments of X,t,respectively.

_0 @°
(X.,) _= X_, P(x.t)dx.,

i"(X.,) "- X., P(xo0dx.t

Substitutingthe expressionforthe marginal density,

(B - 2)

and

/o :o'(X.,) 2 -'- X_, P(x.,,z)dz dx,t

/o=/o'(X.t) = X.t P(X.,, z)dz dx.t

(B-3)

Substituting x/f for X,t and changing the integration variable yields the following expressions
for for the first two moments,

1 1 P(z)dz (B- 4)(X'=)_ - (X_) f=(z)

j_oI 1(Xs,) = (X) f-_ P(z)d,.

(X2) and (X) are found through the analytical expression for the moments of the lognormal distri-
bution, (Ref.)

(X') = exp(2/_ + o'=). (exp o" - 1) (B - 5)

(x) = exp(.+

Based on experimental data, _ is assumed equal to unity. (X) is computed in the mean flow

calculation; thus, p is known. The integrals in z space can be evaluated analytically to compute
VAR at each point. However, for purposes of estimating the interval of integration for X,t, the
following approximations were made,

foI 1 ( 1 1f2(z) P(z)dz-- f-_) ,,., f=(i) (B-6)
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fo V(z)dz = ( ) -

1 1 1

Hence,
1

VAR ---<x>'(&)'
and the standard deviationof Xst,SD,is

SD = VAR I/2 (8- T)

It was found an integration interval from Xst =0 to Xst +4SD was sufficient.
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